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Abstract—Nitrone 3 analogue of 5-deoxy-LL-lyxose was derived from DD-ribose. Its reduction with aqueous SO2 gave the corres-
ponding 4-amino-sugar 2, a potent a-LL-fucosidase inhibitor. 1,3-Dipolar cycloaddition of 3 with alkenes allowed the synthesis of
acetohydroxamic acid and ethane–phosphonate derivatives. Hydroxy-ethane derivative 15 is a nanomolar a-LL-fucosidase inhibitor.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

LL-Fuco-nojirimycin derivatives 1a,b are among the most
potent inhibitors1–4 of a-LL-fucosidase with Ki values in
the nanomolar range. In a previous work5 we have
shown that the more simple pyrrolidine amino-LL-lyxose
2 is a very good fucose mimic since it inhibits the same
enzyme with a Ki value of 10 nM. In the present study,
we describe the synthesis of new derivatives of our
parent compound 2, substituted at the position C-2. To
achieve this goal, we have investigated new synthetic
methods, which led to the nitrone derivative 3. Cyclo-
additions of 3 with various dienophiles followed by
chemical modifications gave rise to a series of new
substituted C-2 derivatives (Scheme 1).
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2. Synthesis of nitrone 3

Crystalline protected benzyl DD-riboside 5 was obtained
from DD-ribose 4 in ca. 50% yield.6 Its 5-O-mesylate was
reduced with AlLiH4 into 6a. The anomeric benzyl group
of 6a was difficult to reduce by catalytic hydrogenolysis
(5% Pd–C in EtOH or EtOH/AcOH), but a clear and
reproducible reaction occurred with sublimated 6a in
EtOH containing 5% formic acid at 30 �C and gave
5-deoxy-DD-ribose derivative 6b7 as 90:10 mixture of ano-
mers (three steps from DD-riboside 5, 80% yield, Scheme 2).

The method of Holzapfel and Crous8 was followed for
the conversion of protected sugar 6b into nitrone 3.
Thus oxime 7a was obtained as 60:40 E/Z mixture by
classic oximation6 of 6b. Then treatment with ClSi
t-BuMe2 in pyridine provided 7b. Mesylation of the
alcohol at C-5 and subsequent O-desilylation with
NBu4F gave nitrone 3 together with the cyclic oxime 8 in
a 90:10 ratio in dry acetonitrile at 80 �C with 1.5 equiv
NBu4FÆ3H2O and 1.5 equiv NEt3. Under other condi-
tions such as CsF, dry NBu4F at 20 �C or at 50 �C led to
1:1 mixtures of 3 and 8. Thus, nitrone 3 was also pre-
pared in 45% yield from 5-deoxy-DD-ribose 6b. An
original and simple reduction/hydrolysis of the preced-
ing nitrone 2 with SO2 in water at 20 �C overnight led to
the 4-amino-4,5-dideoxy-LL-lyxose and was isolated in
62% yield as its crystalline sulfite adduct 9. The amino-
sugar 3 was obtained in water solution by SO2-elimi-
nation with Ba(OH)2.
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3. Cycloaddition of nitrone 3 and
transformation of the adducts

Nitrone 3 reacted easily in C2Cl4 at 50 �C with alkenes
10a,b to give cycloadducts 11a,b and 12a,b quantita-
tively in various proportions. With vinyl phenyl ether
10a,9 the cycloaddition was regiospecific and led to a
85/15 mixture of diastereoisomers exo 11a and endo 12a,
the major isomer 11a being isolated by crystallisation in
85% yield. Vinylphosphonate 10b, which has never been
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used as a dienophile before, led with nitrone 3 to the
four possible adducts in 30/52/13/6 ratio with an
acceptable regioselectivity, the main isomers being dia-
stereoisomers 11b and 12b. The major isomer 12b was
isolated by chromatography in ca. 50% yield (Scheme 3).

The exo stereostructure (2S,3aS,4S,5R,6S) of the major
adduct 11a was determined by X-ray crystallography15

(Fig. 1) and agrees with those of other nitrone adducts
of the pyrrolidine series obtained with vinyl ethers.10–14
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Figure 1. ORTEP view of adduct 11a.
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The 1H NMR spectrum of 11a,b and 12a,b showed
vicinal coupling constants J (H-3a, H-4)¼ ca. 0, con-
firming a trans relation between both protons H-3a and
H-4. For the minor adduct 11b, exo stereostructure was
proven by the observation of strong NOE of 10% on the
signal of H-6 by irradiation of H-2.

Transformation of 11a into ester 13 was carried out
according to the Bayon’s method10;11;14 (N-benzylation
with benzyl bromide in CHCl3 and subsequent thermal
rearrangement at 50 �C). Phenyl ester replacement with
hydroxylamine in pyridine at 30 �C11 gave protected
hydroxamic acid 16 in 50% yield. Reduction of 13 with
AlLiH4 in dry ether gave alcohol 14 in 61% yield.

Ring opening of phosphonate 12b generated the pyr-
rolidineethylphosphonate 19 in 21% overall yield by
hydrogenolysis of the N–O bond into 18, followed by
N-protection and then elimination of the b-hydroxy
group in two steps. This implied formation of a xan-
thate16–19 by reaction with thiocarbonyldiimidazole in
THF and radical fragmentation with AIBN and
Bu3SnH in toluene heated under reflux.

N,O-Deprotection of 14, 16, 18, 19 by hydrolysis with
6N HCl in EtOH followed by hydrogenolysis over Pd–
C gave the corresponding diols 15, 17, 20, 21 in 87–100%
yield.
4. Inhibition studies

We have evaluated the C-a-fucosides 15, 17, 20, 21 as
inhibitors of bovine kidney LL-fucosidase, a model en-
zyme for fucose recognition. The results are reported in
Table 1. For comparison we have also reported Ki values
for the amino-LL-lyxose 25 and the imino-LL-lyxitol 22.5

All inhibitors were competitive. Among the various
substitutions explored in this work, it appears clearly
that alcohol 15 is as potent as the amino-LL-lyxose 2 with
a Ki value of 8 nM. Compared with 2, 15 is much more
stable in solution.
Table 1. Bovine kidney a-LL-fucosidase inhibition values (Ki in lM) for

pyrrolidine-diols 15, 17, 20, 21, amino-LL-lyxose 25 and imino-LL-lyxitol

225

Compounds 2 22 15 17 20 21

a-LL-Fucosidase 0.010 0.050 0.008 5.1 0.040 0.1
5. Conclusion

Efficient conversion of (3R,4R,5S)-3,4-dihydroxy-5-
methylpyrroline (2) into 2-substituted (2S,3S,4R,5S)-
3,4-dihydroxy-5-methylpyrrolidine have been devel-
oped. The new C-glycosides containing the a-LL-lyxo-
furanosides moiety are not better inhibitors of a-LL-
fucosidase from bovine kidney than 2, except for 15,
which bears a 2-(hydroxymethyl) substituent.
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